
Differential Equations, Infinite Limits
and Real Recursive Functions

JOSÉ FÉLIX COSTA∗
Instituto Superior Técnico

Departamento de Matemática
Av. Rovisco Pais
1049-001 Lisboa

PORTUGAL
felixgomescosta@gmail.com

BRUNO LOFF
Instituto Superior Técnico

Departamento de Matemática
Av. Rovisco Pais
1049-001 Lisboa

PORTUGAL
bruno.loff@gmail.com

JERZY MYCKA
University of Maria Curie-Sklodowska

Institute of Mathematics
pl. M. Curie-Sklodowskiej 1

20-031 Lublin
POLAND

jerzm@hektor.umcs.lublin.pl

Abstract: In this article we present a strong support to real recursive function theory as a branch of computability
theory rooted in mathematical analysis. This new paradigm connects computation on reals with differential equa-
tions and infinite limits in a robust and smooth way. The results presented here are taken mainly from the article
(4) of the same authors.

Key–Words: Computation on Reals, Differential Equations, Infinite Limits, Analytical Hierarchy, Decidability

1 Introduction
The notion of algorithm was clarified by Alan Turing,
who gave it a precise meaning as well as introduced a
coherent framework for discrete computation. Many
results showing the relations of his model with other
approaches, such as recursive functions or Church’s
λ-calculus (compare (7)), led to a consistent theoreti-
cal basis for standard computation theory. However,
all these models use enumerable domains and treat
time of computations as discrete.

Nevertheless, computers can be analog devices.
Analog computers with the continuous internal states
rather than discrete, as in digital computation, were
invented and discussed quite thoroughly (9; 8). Un-
fortunately, because of the problem of a good theo-
retical basis for analog computation and lack of im-
provements in analog computers technology (com-
pared with its digital counterpart), analog computa-
tion was about to be forgotten. For many reasons (new
paradigms of computation, search for good tools for
numerical analysis, new technologies) this situation
seems to change nowadays (3; 1).

In 1996 Cris Moore published a seminal paper
(5), where he defined an inductive class of vector
valued functions over IR. This class was defined as
the closure of some basic functions for the opera-
tors of composition, solving of first-order differen-
tial equations and a kind of minimalization. Unfor-

∗Corresponding author. The authors are listed in alphabetic
order.

tunately, some of Moore’s assumptions were not ac-
cepted for their lack of mathematical precision. Most
of these controversial assumptions were consequences
of Moore’s attempt to bring the minimalization oper-
ator – used in the classical recursive functions – into a
continuous context. So in (6) the modified definition
was given replacing minimalization with the taking of
infinite limits. Here we use this definition in the more
sophisticated form, which was formulated in (4) and
we present some discussion of main results forming
the basis for the robust theory of real recursive func-
tions.

2 Definitions and properties
Let us introduce a few operators useful in this paper.
We should start with the operator of differential re-
cursion. For this purpose let us recall some standard
notions and properties from mathematical analysis.

Definition 1 A total function f : IRm → IRn is called
locally Lipschitz if for every compact set C ⊂ IRm

there is a constant K such that all ~x, ~y ∈ C verify the
Lipschitz condition

‖f(~x)− f(~y)‖ ≤ K‖~x− ~y‖. (1)

The smallest such K is called the Lipschitz constant
of f for C.

Notice that the concept of Lipschitz constant is
well-defined, by the compactness of C and the con-
tinuity of f and of the Euclidean norm. The local

Lipschitz property implies continuity. The name lo-
cally Lipschitz is motivated because a total function
f : IRm → IRn is locally Lipschitz if and only if
around every point ~z ∈ IRm there is a neighborhood
V of ~z and a constant K such that all ~x, ~y ∈ V satisfy
(1).

Now we can start building our class of real recur-
sive functions. We take F to be the class of partial,
vector-valued, multiple argument functions over IR,
i.e., the class of partial functions f : IRm → IRn for
some m,n ∈ IN. We accept functions of arity 0 and
call them constants.

There will be two kinds of basic functions: the
constant functions, and the projections. The constant
functions are denoted −1n, 0n, and 1n, for every
n = 0, 1, 2, . . ., and are given by −1n(x1, . . . , xn) =
−1, 0n(x1, . . . , xn) = 0 and 1n(x1, . . . , xn) =
1. The projections are denoted with Un

i , for each
n = 1, 2, . . . and 1 ≤ i ≤ n; they are given by
Un
i (x1, . . . , xn) = xi.

The class will be closed under some number of
partial operators over F .

The first operator is the composition operator de-
noted by C. Given two functions f : IRk → IRn and
g : IRm → IRk, the function C(f, g) goes from IRm

to IRn, and is given by

C(f, g)(~x) = f(g(~x)), for every ~x ∈ IRm.

The domain of C(f, g) is Dom(C(f, g)) = {~x ∈
Dom(g) : g(~x) ∈ Dom(f)}

Our second operator is the differential recursion
operator, denoted by R. Let f : IRn+1 → IRn be a
total locally Lipschitz function. Consider, for a fixed
~x ∈ IRm, the Cauchy problem

g(~x, 0) = ~x ∂tg(~x, t) = f(t, g(~x, t)). (2)

Then R(f) is a function from IRn+1 to IRn. For every
fixed ~x ∈ IRn, R(f)(~x, t) = g(~x, t), where g(~x, ·)
is the maximal solution of (2) — i.e. the function
g defined in (A,B) such that if g̃ is a solution of
(2) over some interval (a, b), then g(t) = g̃(t) for
all t ∈ (a, b). If the interval (A,B) is called the
maximal interval of (2) then the domain of R(f) is
Dom(R(f)) = {(~x, t) : ~x ∈ IRm, A(~x) < t <
B(~x)}, where A,B give the extrema of the maximal
interval.

The next operator is the infinite supremum limit
operator, denoted by Ls. This operator takes
any function f : IRm+1 → IRn, and maps it
into the component-wise infinite supremum limit,
i.e., for every i = 1, . . . , n, (Ls(f)(~x))i =
lim supy→∞ (f(~x, y))i . For the sake of abbreviation,
we write simply

Ls(f)(~x) = lim sup
y→∞

f(~x, y).

Then Dom(Ls(f)) = {~x ∈ IRm :
lim supy→∞ f(~x, y) exists}.

The last operator is called the aggregation op-
erator, denoted by the symbol V. The aggregation
operator takes two functions f : IRm → IRk and
g : IRm → IRn and joins them into a single vector
function V(f, g) : IRm → IRk+n. As expected, this
is given by

V(f, g)(~x) = (f(~x), g(~x)),

and Dom(V(f, g)) = Dom(f) ∩Dom(g).
Using the notation of function algebras we can

finally give the main definition.

Definition 2 The class of real recursive functions, de-
noted by REC(IR), is given by the function algebra

REC(IR) = [−1n, 0n, 1n,Un
i ; C,R,Ls,V].

Let us give a short description of properties of
the above introduced operators. We start pointing out
good behavior of differential recursion.

Theorem 3 For any f : IRn+1 → IRn in the domain
of R, g = R(f) is locally Lipschitz.

It is worth mentioning that the Cauchy problem
of more general form, such as

g(~x, t0) = g0(~x) ∂tg(~x, t) = f(t, g(~x, t), ~x) (3)

can be reduced to the form (2) used in Definition 2.
Let us add a simple example of this operator.

Example 4 Consider the differential recursion
schema

g(0) = (0, 1) ∂tg(t) = (g2(t),−g1(t)).

With the notation of (3), we have g0 = (0, 1) and
f(t, ~z) = ((~z)2,−(~z)1). The solution can be recog-
nized as g = (sin, cos). ut

The class REC(IR) is composed of partial,
multiple-argument vector functions over IR. We
should give a precise characterization how the con-
cept of infinite supremum limit can be applied to such
functions. Let us observe that any partial function
f : IRm → IRn can be uniquely identified with its
graph. The graph of f , Gf is a predicate over IRm+n

given by:

Gf (~x, ~z) ⇐⇒ ~x ∈ Dom(f) and ~z = f(~x).

Now, let us analyze the case when h = Ls(f) (i.e.,
h(~x) = lim supy→∞ f(~x, y)). We can use graphs of
functions, which give the following equivalence:

Gh(~x, ~z) ⇐⇒ (∀ε > 0)(∃w̃ > 0)(∀w > w̃)
∃~v Gg(~x,w,~v) ∧ ‖~v − ~z‖ < ε.

As we can check, the underlined sub-predicate will
not be valid unless f(~x, y) is total for all y > w.
Since w is universally quantified, we obtain the fol-
lowing conclusion: if f(~x, y) is undefined for arbi-
trarily large y, then Ls(f)(~x) will be undefined, i.e.,
~x 6∈ Dom(Ls(f)). Furthermore, in order for the
supremum limit to be correctly defined we should be
sure that every one of its components is defined.

Now we can give some basic theory of real recur-
sive functions based on theorems from (6; 4).

Proposition 5 The binary addition, subtraction and
multiplication are real recursive. The restrictions
to the domain (0,+∞) of the inverse, division and
square root functions are real recursive. The exponen-
tial, logarithm, power, sine, cosine and arc-tangent
functions are real recursive. The real numbers π and
e are real recursive constants.

Proof: Let us present only for illustration the way in
which restricted division and logarithm functions are
obtained through the differential recursion scheme:{

1
1 = 1,
log(1) = 1,

and{
∂x

1
x = −1×

(
1
x

)
×
(

1
x

)
= − 1

x2 ,
∂x log(x) = 1

x .
ut

Some functions need to be defined with limits.

Proposition 6 Kronecker’s δ and Heaviside’s Θ,
given by

δ(x) =

{
1 if x = 0
0 otherwise

and

Θ(x) =

{
1 if x > 0
0 otherwise;

are real recursive.

Proof: Set δ(x) = lim sup
y→∞

(
1

x2 + 1

)y
and Θ(x) =(

lim sup
y→∞

1
1 + 2−xy

)
+

1
2
δ(x). ut

We also have the sawtooth wave function denoted
by r, and the square wave function denoted by s in the
class of real recursive functions. The square function
is given by s(x) = Θ(sin(πx)). We can build the
sawtooth using the recursion scheme r̃(0) = 0 and
∂xr̃(x) = 2 sin(πx)2s(x) − 1

2 , then we put r(x) =
s(x)r̃(x+ 1) + (1− s(x))r̃(x).

Let us add one more important result concerning
iteration.

Definition 7 The restricted iteration operator Ī,
transforms an n-ary, total, locally Lipschitz function

g ∈ F with n components, into a total (n + 1)-ary
function Ī(g) with n components, given by

Ī(g)(~x, t) = gb|t|c(~x) = g ◦ g ◦ . . . ◦ g︸ ︷︷ ︸
b|t|c times

(~x).

The following theorem proves that the iteration oper-
ator does not lead outside the class of real recursive
functions.

Theorem 8 REC(IR) is closed under the iteration
operator Ī.

3 Computability on reals
In the rest of the paper we use w, x, y, z to denote
variables ranging over IR, and a, b, c, i, j to denote
variables ranging over IN. The corresponding vector
forms ~w, ~x, . . . and ~a,~b, . . . will denote vector-valued
variables over tuples of IR and IN.

Let us stress that many ideas of this section are
rooted in (2; 4).

We start with a few simple functionals as exam-
ples: the zero functionals, where each Zk is such
that Zk(x1, . . . , xk; a) = 0; the successor function-
als, where each Sk, given by Sk(x1, . . . , xk; a) =
a + 1; the projection functionals, where each Uk,mj
obeys Uk,mj (x1, . . . , xk; a1, . . . , am) = aj ; the oracle
functionals, Oki , such that Oki (x1, . . . , xk; b) = xi(b)
(here xi(b) means the b-th digit of the binary expan-
sion of xi).

We use C, R and µ to stand for the composition,
primitive recursion and minimalization operators for
functionals.

Given F : IRk × INm′ → INn, G : IRk × INm →
INm′ , the functional C(F,G) : IRk × INm → INn is
given by

C(F,G)(~x;~a) = F (~x;G(~x;~a)).

For two functionals F : IRk × INm → IN and
G : IRk×INm+2 → IN,R(F,G) : IRk×INm+1 → IN
is given by

R(F,G)(~x;~a, 0) = F (~x;~a),

R(F,G)(~x;~a, b+ 1) = G(~x; b,R(F,G)(~x;~a, b),~a).

The minimalization operator µ takes a functional
F : IRk×INm+1 → IN and gives µ(F) : IRk×INm →
IN such that

µ(F)(~x;~a) = min{b ∈ IN : F (~x;~a, b) = 0}.

Finally, V is the aggregation operator: if F :
IRk×INm → INn, F : IRk×INm → INk are two func-
tionals, then V(F,G) : IRk × INm → INn+k comes
from

V(F,G)(~x;~a) = (F (~x;~a), G(~x;~a)).

Now we can give the definition of partial recur-
sive functionals built from basic functionals by the
above listed operators.

Definition 9 The class of partial recursive function-
als, PRECF, is given by the function algebra:

PRECF = [Zk,Sk,Uk,mj ,Ok,mi ; C,R,V, µ].

The important property of this definition is the
fact, that PRECF can be described by the well-
known, intuitive notion of Turing machine.

Proposition 10 A function f : IRk× INm → INn is in
PRECF if and only if there is a Turing machine with
k+m+n tapes, which behaves in the following way: if
we take the binary expansion of x1, . . . , xk and write
it in the first k tapes (this expansion might be infinite),
write the numbers a1, . . . , am in each of the following
m tapes and begin the computation then: for f(~x;~a)
defined – the Turing machine will halt after a finite
number of steps and print (f(~x;~a))1, . . . , (f(~x;~a))n
in the last n tapes; for f(~x;~a) undefined – the ma-
chine will not halt.

The below result presents the interesting fact
that classical computability notion of partial recursive
functionals has some connection with real recursive
functions.

Theorem 11 If a functional F : IRk × INm → INn is
in PRECF then there is a partial recursive function
F̃ : INk+m → INn with the property that F (~x;~a) ' ~b
if and only if there is an m ∈ IN such that F̃ (; ~x �In
N,~a) ' ~b for all natural n ≥ m.

Now let us focus on a different side of com-
putability with real recursive functions. What prop-
erties of this class can be computed by real recursive
functions? To answer this question we should start
with some representation of functions by numbers.

Because the set of real recursive functions is enu-
merable we can find relation between natural numbers
and functions from REC(IR). The usual method uses
descriptions, i.e. the words which are built in such
a way, that all operators and basic functions used to
define some function are represented in these words.

Definition 12 The set of descriptions of REC(IR)
functions is inductively defined as follows:

• unj is a n-ary description ofUnj , 1 ≤ j ≤ n ∈ IN;

• 1n is a n-ary description of f(x1, . . . , xn) = 1,
for all (x1, . . . , xn) ∈ IRn, n ∈ IN;

• 1̄n is a n-ary description of f(x1, . . . , xn) = −1,
for all (x1, . . . , xn) ∈ IRn, n ∈ IN;

• 0n is a n-ary description of f(x1, . . . , xn) = 0,
for all (x1, . . . , xn) ∈ IRn, n ∈ IN;

• if 〈h〉 = 〈h1, . . . , hm〉 is a k-ary description of
the REC(IR) function h and 〈g〉 = 〈g1, . . . , gk〉
is a n-ary description of the REC(IR) function
g, then c(〈h〉, 〈g〉) is a n-ary description of the
composition of h and g;

• if 〈h〉 = 〈h1, . . . , hn〉 is a k-ary description of
the REC(IR) function h and 〈g〉 = 〈g1, . . . , gn〉
is a (k + n + 1)-ary description of the real re-
cursive vector g, then r(〈h〉, 〈g〉) is a (k+1)-ary
description of the function defined by differential
recursion;

• if 〈h〉 = 〈h1, . . . , hm〉 is a (n + 1)-ary descrip-
tion of the REC(IR) function h, then ls(〈h〉) is a
n-ary description of the taking of infinite supre-
mum limit of h;

• if 〈f1〉, . . . , 〈fm〉 are n-ary descriptions of
real recursive k-ary scalars f1, . . . , fm, then
v(〈f1〉, . . . , 〈fm〉) is a k-ary description of the
REC(IR) function f = (f1, . . . , fm).

Let us observe that there are effective methods of
enumeration of all descriptions, hence there is one-to-
one correspondence between natural numbers and de-
scriptions. Now we can answer some questions about
properties of real recursive functions (treated as sets
of their descriptions) and analyze whether such prop-
erties can be decided by real recursive characteristic
functions.

Definition 13 A real recursive function Ψ : IRm+1 →
IRn is called universal if for every e ∈ IN, ~x ∈ IRm,
we have

Ψ(e, ~x) ' f(~x)

whenever e is a code of a description of an m-ary
function f with n components.

Theorem 14 There is no universal real recursive
function.

Proof: A diagonal argument will be give us reduc-
tio ad absurdum. For clarity we present only the case
when m = n = 1, but the argument may easily be

extended. Suppose that there was a universal real re-
cursive function Ψ : IR2 → IR. We could find its
real recursive totalization χΨ and τΨ

1 and the func-
tion given by

g(x) = log(1− χΨ(x, x))
= log(1− χφx(x))

=

{
1 x 6∈ Dom(φx),
⊥ otherwise;

would be a real recursive function of arity 1. So let
e be a code of g. We have that e ∈ Dom(g) if and
only if e 6∈ Dom(φe), which is the contradiction we
sought. ut

In the similar manner we can define and ana-
lyze many other problems. For example, problem of
checking whether some given description of a real re-
cursive function is minimal for this function cannot be
decided by any real recursive characteristic function.
In the same way problems of identity of two functions
form REC(IR) given by their description or check-
ing whether some x ∈ IR belongs to the domain of
a function from REC(IR) given by its description are
undecidable by real recursive functions.

4 Analytical hierarchy
The analytical hierarchy is a hierarchy of predicates
over real and natural numbers. It is used extensively
in the field of descriptive set theory and the study of
recursion on higher types.

A predicate P over real and natural numbers is
called recursive if there is a partial recursive func-

tional F such that F (~x;~a) =

{
1 P (~x,~a) holds,
0 otherwise.

A predicate Q over real and natural numbers is
called arithmetical if it is given using natural num-
ber quantifiers over a recursive predicate, i.e., if
for some recursive predicate P , Q(~x,~a) ⇐⇒
(∀b1)(∃b2) . . . (∀bn−1)(∃bn)P (~x,~a,~b).

Definition 15 The analytical hierarchy of predicates
consists of three families of predicates over real and
natural numbers:

1. Σ1
0 is the class of arithmetical predicates, and

Π1
0 = Σ1

0.

2. Σ1
n+1 is the class of predicates given by
∃y P (~x, y,~a), with P in Π1

n.

3. Π1
n+1 is the class of predicates given by
∀y P (~x, y,~a), with P in Σ1

n.
1The precise argument of this statement can be found in (4).

4. ∆1
n = Σ1

n ∩Π1
n.

We write ∆1
ω to stand for ∪n∈IN∆1

n, which is ex-
actly the set of all analytical predicates. Now we can
use the notion of the graph of a functions to place
functions within the analytical hierarchy.

Definition 16 We say that a function f : IRm → IRn

is in Σ1
k (Π1

k, ∆1
k) if its graph is in Σ1

k (Π1
k, ∆1

k).

We know that quantifiers may be used to express
a rich variety of mathematical ideas, and so we expect
that there are many functions in the analytical hierar-
chy.

Proposition 17 The functions 1n, 1̄n, 0n,Un
i ,+,×,

xy, | · | and b·c, as well as the predicates of equal-
ity and inequality over the reals, are in ∆1

0.

It is not difficult to prove by induction on struc-
ture of descriptions of functions that all real recursive
functions belong to the analytical hierarchy. However
the more fundamental theorem holds, which will be
the final stage of this paper.

Theorem 18 REC(IR) is the class of functions with
graphs in the analytical hierarchy, i.e., REC(IR) =
{f : the predicate given by ~z = f(~x) is in ∆1

ω}.

We will describe briefly the method of the proof
that every function in ∆1

ω is real recursive. As the first
step it is sufficient to prove that every predicate in the
analytical hierarchy has a real recursive characteris-
tic. It is done by showing that the characteristic func-
tion of every predicate P ∈ Π1

1 has a real recursive
extension and then this result can be extended to the
conclusion that the characteristic of every predicate P
in the analytical hierarchy is real recursive. The last
step in the proof is the proposition that if the graph of
a function has a real recursive characteristic then the
function itself is real recursive, which is below pre-
sented for scalar functions.

Proposition 19 Let χf denote the characteristic
function of the graph of f : IRm → IR, i.e.,

χf (z, ~x) =

{
1 z = f(~x)
0 otherwise.

If χf is real recursive, then so is f .

Proof: We construct a search operator, somewhat like
minimalization, but with the whole IR as search do-
main. Considering the function σ(x) = ex

1+ex and its

inverse σ−1(y) = log(y) − log(1 − y). The function
σ surjectively maps IR into (0, 1). So let

F (~x, z) = (1− χf (z, ~x)) + χf (z, ~x)σ(z)

=

{
σ(z) z = f(~x),
1 otherwise.

Now we can compute f in the following way.

f(~x) = σ−1(Inf(F)(~x)).

where Inf(F) is a real recursive operator2 given as
Inf(F)(~x) = infy∈IR F (~x, y). ut

References:

[1] L. Blum, M. Shub and S. Smale, On the Theory
of Computation and Complexity over the Real
Numbers: NP-completeness, Recursive Func-
tions and Universal Machines, Bulletin of the
American Mathematical Society, 21(1), 1989,
pp. 1–46.

[2] O. Bournez and E. Hainry, Recursive Analy-
sis Characterized as a Class of Real Recur-
sive Functions, Fundamenta Informaticae 74(4),
2006, pp. 409–433.

[3] J.F. Costa, B. Loff and J. Mycka, The new
promise of analog computation, Computation
and Logic in the Real World (CiE 2007), Lec-
ture Notes in Computer Science, 4497, 2007,
pp. 189–195.

[4] B. Loff, J.F. Costa and J. Mycka, A Foundation
of Real Recursive Functions Theory, Annals of
Pure and Applied Logic, accepted.

[5] C. Moore, Recursion Theory on the Reals
and Continuous-time Computation, Theoretical
Computer Science, 162, 1996, pp. 23–44.

[6] J. Mycka and J.F. Costa, Real Recursive Func-
tions and Their Hierarchy, Journal of Complex-
ity, 20(6), 2004, pp. 835–857.

[7] P. Odifreddi, Classical Recursion Theory,
North-Holland, 1989.

[8] C. Shannon, Mathematical Theory of the Differ-
ential Analyzer, Journal Mathematical Physics,
20, 1941, pp. 337–354.

[9] J.S. Small, General-Purpose Electronic Analog
Computing: 1945-1965 Annals of the History of
Computing 15(2), 1993, pp. 8–18.

2The proof that REC(IR) is closed for Inf can be found in
(4).

